• Scopus
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)

功率型储能技术与应用综述

张晓虎, 张熊, 王凯, 孙现众, 马衍伟

文章导航 >  电气工程学报  > 2024  >  19(3) : 385-398.  > DOI: 10.11985/2024.03.037
上一篇 下一篇
张晓虎, 张熊, 王凯, 孙现众, 马衍伟. 功率型储能技术与应用综述[J]. 电气工程学报, 2024, 19(3): 385-398. DOI: 10.11985/2024.03.037
引用本文: 张晓虎, 张熊, 王凯, 孙现众, 马衍伟. 功率型储能技术与应用综述[J]. 电气工程学报, 2024, 19(3): 385-398. DOI: 10.11985/2024.03.037
ZHANG Xiaohu, ZHANG Xiong, WANG Kai, SUN Xianzhong, MA Yanwei. Review of Power-type Energy Storage Technology and Application[J]. Journal of Electrical Engineering, 2024, 19(3): 385-398. DOI: 10.11985/2024.03.037
Citation: ZHANG Xiaohu, ZHANG Xiong, WANG Kai, SUN Xianzhong, MA Yanwei. Review of Power-type Energy Storage Technology and Application[J]. Journal of Electrical Engineering, 2024, 19(3): 385-398. DOI: 10.11985/2024.03.037

功率型储能技术与应用综述

详细信息
    作者简介:

    张晓虎,男,1986年生,硕士,工程师。主要研究方向为锂离子电容器、电化学储能技术及应用。E-mail:xhzhang@mail.iee.ac.cn

    王凯(通信作者),男,1982年生,博士,研究员。主要研究方向为新型电化学储能技术及应用。E-mail:wangkai@mail.iee.ac.cn

  • 中图分类号: TM92

Review of Power-type Energy Storage Technology and Application

  • 摘要: 大规模可再生能源发电并网给电力系统安全稳定运行带来了新的挑战,储能技术是解决这一问题的重要手段。为了满足新型电力系统应用场景的多样化需求,储能技术呈现百花齐放、多元化发展新态势。其中,功率型储能技术具有功率密度高、响应速度快、循环寿命长等优势,在新型电力系统的电力调频、平滑新能源波动、负荷跟踪等领域应用具有重要的应用价值。剖析了电化学电容器、飞轮储能、超导磁储能等功率型储能的技术原理和性能特征,梳理了各类功率型储能技术未来发展规划,总结了功率型储能在新型电力系统的应用技术研究工作,同时列举了目前国内外功率型储能的工程示范应用典型案例。最后针对各类功率型储能未来在电力系统应用面临的挑战进行了分析,提出未来功率型储能技术未来发展方向,旨在为功率型储能技术研究和产业发展提供参考。
    Abstract: Larg-scale renewable energy generation brings new challenges to the safe and stable operation of power system. Energy storage technology is an important solution. In order to meet the diverse needs of new power system application scenarios, and energy storage technology shows a new trend of diversified development. Among the many types of energy storage technology, power-type energy storage technology has the advantages of high-power density, fast response speed and long cycle life. It has important application value in the fields of power frequency modulation, smoothing new energy fluctuations, load tracking, etc. The technical principle, performance characteristics and future development direction of power-type energy storage technology such as electrochemical capacitor, flywheel energy storage and superconducting magnetic energy storage are analyzed, and the application schemes of various kinds of power-type energy storage in new power system are summarized. The future technology development plan of power-type energy storage is reviewed. At the same time, the typical cases of project demonstration and application of power storage at home and abroad are listed. Finally, the analysis and outlook of the challenges facing the application of various types of power storage in the power system in the future are made. The future development direction of future power-type energy storage technology is proposed. Its purpose is to provide a reference for the research and industrial development of power-type energy storage technology.
  • [1] 刘联涛,刘飞,吉平,等.储能参与新能源消纳的优化控制策略[J].中国电力,2023,56(3):137-143. LIU Liantao,LIU Fei,JI Ping,et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power,2023,56(3):137-143.
    [2] 孙玉树,杨敏,师长立,等.储能的应用现状和发展趋势分析[J].高电压技术,2020,46(1):80-89. SUN Yushu,YANG Min,SHI Changli,et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering,2020,46(1):80-89.
    [3] 李相俊,马会萌,姜倩.新能源侧储能配置技术研究综述[J].中国电力,2022,55(1):13-25. LI Xiangjun,MA Huimeng,JIANG Qian. Review of energy storage configuration technology on renewable energy side[J]. Electric Power,2022,55(1):13-25.
    [4] 李国庆,闫克非,范高峰,等.储能参与现货电能量-调频辅助服务市场的交易决策研究[J].电力系统保护与控制,2022,50(17):45-54. LI Guoqing,YAN Kefei,FAN Gaofeng,et al. Transaction decision-making of energy storage stations participating in the spot energy and frequency modulation ancillary service market[J]. Power System Protection and Control,2022,50(17):45-54.
    [5] 郑琼,江丽霞,徐玉杰,等.碳达峰、碳中和背景下储能技术研究进展与发展建议[J].中国科学院院刊,2022,37(4):529-540. ZHENG Qiong,JIANG Lixia,XU Yuji,et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences,2022,37(4):529-540.
    [6] 李泓,张强.蓄势赋能谋发展,勇毅笃行谱新篇——储能国家科技项目十年(2016-2025)总结和展望[J].储能科学与技术,2022,11(9):2691-2701. LI Hong,ZHANG Qiang. A review of energy storage science and technology projects supported by national key R&D program[J]. Energy Storage Science and Technology,2022,11(9):2691-2701.
    [7]

    KOOHI F,ROSEN M A. A review of energy storage types,applications and recent developments[J]. Journal of Energy Storage,2020,27:101047.

    [8]

    NDEEM F,HUSSAIN S M S,TIWARI P K,et al. Comparative review of energy storage systems, their roles, and impacts on future power systems[J]. IEEE Access,2018,7:4555-4585.

    [9] 赵冬梅,徐辰宇,陶然,等.多元分布式储能在新型电力系统配电侧的灵活调控研究综述[J].中国电机工程学报,2023,43(5):1776-1798. ZHAO Dongmei,XU Chenyu,TAO Ran,et al. Review on flexible regulation of multiple distributed energy storage in distribution side of new power system[J]. Proceedings of the CSEE,2023,43(5):1776-1798.
    [10] 谢小荣,马宁嘉,刘威,等.新型电力系统中储能应用功能的综述与展望[J].中国电机工程学报,2023,43(1):158-168. XIE Xiaorong,MA Ningjia,LIU Wei,et al. Functions of energy storage in renewable energy dominated power systems:Review and prospect[J]. Proceedings of the CSEE,2023,43(1):158-168.
    [11] 古宸嘉,王建学,李清涛,等.新能源集中并网下大规模集中式储能规划研究述评[J].中国电力,2022,55(1):2-12. GU Chenjia,WANG Jianxue,LI Qingtao,et al. Review on large-scale centralized energy storage planning under centralized grid integration of renewable energy[J]. Electric Power,2022,55(1):2-12.
    [12]

    BEGUIN F,PRESSER V,BALDUCCI A,et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Mateterials,2014,26:2219-2251.

    [13]

    FORAHANI M,DONNE S W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior[J]. Journal of Electrochemical Society,2018,165(3):664-673.

    [14]

    FIROUZ Y,OMAR N,TIMMERMANS J M,et al. Lithium-ion capacitor characterization and development of new electrical model[J]. Energy,2015,83:597-613.

    [15] 张晓虎,孙现众,张熊,等.锂离子电容器在新能源领域应用展望[J].电工电能新技术,2020,39(11):48-58. ZHANG Xiaohu,SUN Xianzhong,ZHANG Xiong,et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy,2020,39(11):48-58.
    [16]

    LIU Fangyan,FENG Xinliang,WU Zhongshuai. The key challenges and future opportunities of electrochemical capacitors[J]. Journal of Energy Chemistry,2023,76:459-461.

    [17]

    ZHAO Jingyuan,BURKE A F. Electrochemical capacitors:Materials,technologies and performance[J]. Energy Storage Materials,2021,36:31-55.

    [18] 韩东旭,赵凯,刘鑫,等.考虑超级电容器荷电状态的混合储能系统能量管理策略[J].电气工程学报,2020,15(3):31-37. HAN Dongxu,ZHAO Kai,LIU Xin,et al. Energy management strategy of hybrid energy storage system considering the state of charge of the supercapacitor[J]. Journal of Electrical Engineering,2020,15(3):31-37.
    [19] 周林,黄勇,郭珂,等.微电网储能技术研究综述[J].电力系统保护与控制,2011,39(7):147-152. ZHOU Lin,HUANG Yong,GUO Ke,et al. A survey of energy storage technology for micro grid[J]. Power System Protection and Control,2011,39(7):147-152.
    [20] 韩亚伟,姜挥,付强,等.超级电容器国内外应用现状研究[J].上海节能,2021,1:43-52. HAN Yawei,JIANG Hui,FU Qiang,et al. Research on application status of super-capacitors in domestic and overseas market[J]. Shanghai Energy Conservation,2021,1:43-52.
    [21]

    KOYANAGI K,HIDA Y,ITO Y,et al. A smart photovoltaic generation system integrated with lithium-ion capacitor storage[C]//46th International Universities Power Engineering Conference(UPEC),Soest,Germany,2011:1-6.

    [22]

    NAKAYAMA T,TACHIARA W,TODA M,et al. Improvement of converter efficiency in partial load using temporary storage with lithium-ion capacitor[C]//49th International Universities Power Engineering Conference(UPEC),Cluj-Napoca,Romania,2014:1-6.

    [23] 朱武,操瑞发,应彭华,等.超级电容器系统在改善并网风电场输出中的应用[J].电网技术,2008,32(S2):256-259. ZHU Wu,CAO Ruifa,YING Penghua,et al. Application of SCESS in improving stability of power system connected with wind farms[J]. Power System Technology,2008,32(S2):256-259.
    [24] 张步涵,曾杰,毛承雄,等.串并联型超级电容器储能系统在风力发电中的应用[J].电力系统自动化,2008,28(4):1-4. ZHANG Buhan,ZENG Jie,MAO Chengxiong,et al. Application of series-parallel energy storage system with super-capacitor in wind power generation[J]. Electric Power Automation Equipment,2008,28(4):1-4.
    [25] 颜湘武,宋子君,崔森,等.基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J].电工技术学报,2020,35(3):530-541. YAN Xiangwu,SONG Zijun,CUI Sen,et al. Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society,2020,35(3):530-541.
    [26] 王雨欣,王思怡,杨黎晖,等.超级电容储能和卸荷电路协调控制的永磁同步风电机组低电压穿越策略[J].高压电器,2023,59(4):177-185. WANG Yuxin,WANG Siyi,YANG Lihui,et al. Low voltage ride through control strategy of permanent magnetic synchronous wind turbine with coordination of super capacitor energy storage and chopper circuit[J]. High Voltage Apparatus,2023,59(4):177-185.
    [27]

    MANDIC G,NASIRI A,GHOTBI E,et al. Lithium-ion capacitor energy storage integrated with variable speed wind turbines for power smoothing[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics,2013,1(4):187-295.

    [28] 张志文,彭政,王卿卿,等.风电场下储能式高功率型DVR优化补偿策略研究[J].电力系统保护与控制,2020,48(18):69-77. ZHANG Zhiwen,PENG Zheng,WANG Qingqing,et al. Research on an optimal compensation strategy of an energy storage high power DVR with wind farm[J]. Power System Protection and Control,2020,48(18):69-77.
    [29] 戴兴建,魏鲲鹏,张小章,等.飞轮储能技术研究五十年评述[J].储能科学与技术,2018,7(5):765-782. DAI Xingjian,WEI Kunpeng,ZHANG Xiaozhang,et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology,2018,7(5):765-782.
    [30]

    ZHANG Jianwei,WANG Yunhui,LIU Guangchen,et al. A review of control strategies for flywheel energy storage system and a case study with matrix converter[J]. Energy Reports,2022,8:3948-3963.

    [31] 陈海生,凌浩恕,徐玉杰.能源革命中的物理储能技术[J].中国科学院院刊,2019,34(4):450-459. CHEN Haisheng,LING Haoshu,XU Yujie. Physical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences,2019,34(4):450-459.
    [32]

    ADHIKARI S,KARKI R. Integrated disturbance response modeling of wind-integrated power systems to quantify the operational reliability benefits of flywheel energy storage[J]. IEEE Transactions on Sustainable Energy,2019,10(3):1152-1160.

    [33] 何林轩,李文艳.飞轮储能辅助火电机组一次调频过程仿真分析[J].储能科学与技术,2021,10(5):1679-1686. HE Linxuan,LI Wenyan. Simulation analysis of primary frequency modulation process of thermal power units with auxiliary of flywheel energy storage[J]. Energy Storage Science and Technology,2021,10(5):1679-1686.
    [34] 罗耀东,田立军,王垚,等.飞轮储能参与电网一次调频协调控制策略与容量优化配置[J].电力系统自动化,2022,46(9):71-82. LUO Yaodong,TIAN Lijun,WANG Yao,et al. Coordinated control strategy and optimal capacity configuration for flywheel energy storage participating in primary frequency regulation of power grid[J]. Automation of Electric Power Systems,2022,46(9):71-82.
    [35] 洪烽,梁璐,逄亚蕾,等.基于机组实时出力增量预测的火电-飞轮储能系统协同调频控制研究[J].中国电机工程学报,2023,43(21):8366-8377.

    HONG Feng,LIANG Lu,PANG Yalei,et al. Research on coordinated frequency control of thermal power-flywheel energy storage system based on the real-time prediction of output increment[J]. Proceedings of the CSEE,2023,43(21):8366-8377.

    [36] 武鑫,杨威鹏,熊星宇,等.辅助核电机组一次调频的飞轮储能阵列容量配置方法[J].动力工程学报,2023,43(7):877-884. WU Xin,YANG Weipeng,XIONG Xingyu,et al. Capacity configuration method of flywheel energy storage array for assisting primary frequency regulation of nuclear power units[J]. Journal of Chinese Society of Power Engineering,2023,43(7):877-884.
    [37] 隋云任,梁双印,黄登超,等.飞轮储能辅助燃煤机组调频动态过程仿真研究[J].中国电机工程学报,2020,40(8):2597-2605. SUI Yunren,LIANG Shuangyin,HUANG Dengchao,et al. Simulation study on frequency modulation process of coal burning plants with auxiliary of flywheel energy storage[J]. Proceedings of the CSEE,2020,40(8):2597-2605.
    [38] 陈玉龙,武鑫,滕伟,等.用于风电功率平抑的飞轮储能阵列功率协调控制策略[J].储能科学与技术,2022,11(2):600-608. CHEN Yulong,WU Xin,TENG Wei,et al. Power coordinated control strategy of flywheel energy storage array for wind power smoothing[J]. Energy Storage Science and Technology,2022,11(2):600-608.
    [39] 许庆祥,滕伟,武鑫,等.平抑风电功率波动的飞轮储能系统容量配置方法[J].储能科学与技术,2022,11(12):3906-3914. XU Qingxiang,TENG Wei,WU Xin,et al. Capacity configuration method of flywheel storage system for suppressing power fluctuation of wind farms[J]. Energy Storage Science and Technology,2022,11(12):3906-3914.
    [40]

    LEI Mingzhuang,MENG Keqilao,FENG Haining,et al. Flywheel energy storage controlled by model predictive control to achieve smooth short-term high-frequency wind power[J]. Journal of Energy Storage,2023,63:106949.

    [41] 周皓,李军徽,葛长兴,等.改善风电并网电能质量的飞轮储能系统能量管理系统设计[J].太阳能学报,2021,42(3):105-113. ZHOU Hao,LI Junhui,GE Changxing,et al. Research on improving power quality of wind power system based on energy management system of flywheel energy storage system[J]. Acta Energiae Solaris Sinica,2021,42(3):105-113.
    [42] 何锦华,吴斌,曹敏健,等.面向辅助服务的新能源场站共享储能容量优化配置[J].电力工程技术,2022,41(6):50-57. HE Jinhua,WU bin,CAO Minjian,et al. Capacity optimization configuration of shared energy storage in renewable energy stations for ancillary service[J]. Electric Power Engineering Technology,2022,41(6):50-57.
    [43] 郭文勇,张京业,张志丰,等.超导储能系统的研究现状及应用前景[J].科技导报,2016,34(23):68-80. GUO Wenyong,ZHANG Jingye,ZHANG Zhifeng,et al. Current research status and application prospect of SMES[J]. Science & Technology Review,2016,34(23):68-80.
    [44]

    ADETOKUN B B,OGHORADA O,ABUBAKAR S J. Superconducting magnetic energy storage systems:Prospects and challenges for renewable energy applications[J]. Journal of Energy Storage,2022,55:105663.

    [45]

    VULUSALA V S G,MADICHETTY S. Application of superconducting magnetic energy storage in electrical power and energy systems:A review[J]. International Journal of Energy Research,2018,42:358-368.

    [46]

    SANTOS C A,IBANEZA M E L,ASENSIO R E,et al. Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage:Application to the case of the Spanish electrical system[J]. Renewable and Sustainable Energy Reviews,2018,82:2455-2470.

    [47] 肖立业.超导技术在未来电网中的应用[J].科学通报,2015,60(25):2367-2375. XIAO Liye. The R & D of superconducting technology for future power grid[J]. Chinese Science Bulletin,2015,60(25):2367-2375.
    [48] 张京业,唐文冰,肖立业.导技术在未来电网中的应用[J].物理,2021,50(2):92-97. ZHANG Jingye,TANG Wenbing,XIAO Liye. Application of superconducting technology in future power grids[J]. Physics,2021,50(2):92-97.
    [49]

    MUKHERJEE P,RAO V V. Design and development of high temperature superconducting magnetic energy storage for power applications:A review[J]. Physica C:Superconductivity and Its Applications,2019,563:67-73.

    [50] 郭文勇,蔡富裕,赵闯,等.超导储能技术在可再生能源中的应用与展望[J].电力系统自动化,2019,43(8):2-14. GUO Wenyong,CAI Fuyu,ZHAO Chuang,et al. Application and prospect of superconducting magnetic energy storage for renewable energy[J]. Automation of Electric Power System,2019,43(8):2-14.
    [51]

    KIM H J,SEONG K C,CHO J W,et al. Development of a 3 MJ/750 kVA SMES system[J]. IEEE Transaction Applied Superconductivity,2006,16(2):574-577.

    [52]

    ZHU Jiahui,CHENG Qiang,YANG Bin,et al. Experimental research on dynamic voltage sag compensation using 2G HTS SMES[J]. IEEE Transactions on Applied Superconductivity,2011,21(3):2126-2130.

    [53]

    CHAINE S,TRIPATHI M. Design of an optimal SMES for automatic generation control of two-area thermal power system using Cuckoo search algorithm[J]. Journal of Electrical Systems and Information Technology,2015,2:1-13.

    [54] 李岚,丁安敏,田洪英,等.超导磁储能装置提高柔性直流配电系统稳定性的研究[J].电源学报,2024,22(2):250-262.

    LI Lan,DING Anmin,TIAN Hongying,et al. Research on superconducting magnetic energy storage in improving the stability of flexible DC power distribution system[J]. Journal of Power Supply,2024,22(2):250-262.

    [55]

    SHI Jing,TANG Yuejin,XIA Yajun,et al. SMES based excitation system for doubly-fed induction generation in wind power application[J]. IEEE Transactions on Applied Superconductivity,2011,21(3):1105-1108.

    [56]

    KANG B K,KIM S T,SUNG B C,et al. A study on optimal sizing of superconducting magnetic energy storage in distribution power system[J]. IEEE Transactions on Applied Superconductivity,2012,22(3):11-16.

    [57]

    GAO Shuang,CHAN K T,LIU Chunhua,et al. SMES control for power grid integrating renewable generation and electric vehicles[J]. IEEE Transactions on Applied Superconductivity,2012,22(3):1014-1020.

    [58]

    WANG Zheng,ZOU Zhixiang,ZHENG Yang,et al. Design and control of a photovoltaic energy and SMES hybrid system with current source grid converter[J]. IEEE Transactions on Applied Superconductivity,2013,23(3):1471-1478.

    [59]

    LI Ren,XU Ying,ZUO Wenping,et al. Development of a movable HTS SMES system[J]. IEEE Transactions on Applied Superconductivity,2015,25(4):1-9.

    [60]

    XIAO Liye,DAI Shaotao,LIN Liangzhen,et al. Development of a 10 kA HTS DC power cable[J]. IEEE Transactions on Applied Superconductivity,2012,22(3):5800404.

    [61]

    GUO Wenyong,ZHANG Guoming,ZHANG Jingye,et al. Development of a 1-MVA/1-MJ superconducting fault current limiter-magnetic energy storage system for LVRT capability enhancement and wind power smoothing[J]. IEEE Transactions on Applied Superconductivity,2018,28(4):5700505.

计量
  • 文章访问数:  132
  • HTML全文浏览量:  16
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-24
  • 修回日期:  2024-02-26

目录

    /

    返回文章
    返回