The Research Status and Development Trend of Robot Perception Technology Based on MEMS Sensors
-
摘要: 传感器是机器人具备类人知觉与反应能力的基础,能够辅助其实现内部反馈控制和外部环境感知。随着传感器技术和人工智能(AI)的发展,机器人集成了更为复杂的传感器系统,包括视觉传感器、激光雷达、惯性传感器和力传感器等,能够完成更为复杂的工作任务,应用范围从传统工业领域逐渐向生活服务领域延伸。微机电系统(Micro-Electro-Mechanical Systems,MEMS)传感器具有体积小、精度高、功耗低和成本低等优点,且适用于极端环境,已在机器人领域得到广泛应用。综述MEMS传感器发展现状,包括测距传感器、惯性传感器、力/触觉传感器及嗅觉传感器,并探讨其在机器人领域的应用与发展趋势。未来,MEMS传感器与AI大模型相结合,能够促进具身智能机器人的创新发展与应用。Abstract: Sensors are the foundation for robots to have human-like perception and reaction ability,which can assist them to realize internal feedback control and external environment perception.With the development of sensor technology and artificial intelligence (AI),the robots have integrated more complex sensor systems,including vision sensors,Lidar,inertial sensors and force sensors,etc.,which can complete more complex work tasks.The application scope has gradually extended from the traditional industrial field to the field of life services.The Micro-Electro-Mechanical Systems (MEMS) sensors have the advantages of small size,high precision,low power consumption and low cost,and are suitable for extreme environments,which have been widely used in the field of robotics.The development status of MEMS sensors including range sensors,inertial sensors,force/tactile sensors and olfactory sensors is reviewed,and the application and development trend of MEMS sensors in the field of robotics are discussed.In the future,the combination of MEMS sensors and AI large models can promote the innovative development and application of embodied intelligent robots.
-
-
[1] 许博玮, 马志勇, 李悦.多传感器信息融合技术在环境感知中的研究进展及应用[J]. 计算机测量与控制, 2022, 30(9):1-7, 21. [2] 王信豪.苏州大学机电学院院长孙立宁:微纳感知技术将促进人形机器人智能化发展[N]. 中国电子报, 2024-05-28(6). [3] GONZALEZ E, ZHANG H.Recent developments in multi-sensor systems for autonomous robots[J]. Robotics and Autonomous Systems, 2023(164):104300.
[4] GUPTA R, KUMAR A, BISWAS A, et al.Advances in micro and nano-engineered materials for high-value capacitors for miniaturized electronics[J]. Journal of Energy Storage, 2022(55):105591.
[5] 王耀南, 江一鸣, 姜娇, 等.机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3):494-513. [6] HAJARE R, REDDY V, SRIKANTH R.MEMS based sensors-a comprehensive review of commonly used fabrication techniques[J]. Materials Today:Proceedings, 2022(49):720-730.
[7] BOGUE R.MEMS sensors:past, present and future[J]. Sensor Review, 2007, 27(1):7-13.
[8] FAUDZI A, SABZEHMEIDANI Y, SUZUMORI K.Application of micro-electro-mechanical systems (MEMS) as sensors:a review[J]. Journal of Robotics and Mechatronics, 2020, 32(2):281-288.
[9] ZHOU S, LI Y H, WANG Q Q, et al.Integrated actuation and sensing:toward intelligent soft robots[J]. Cyborg and Bionic Systems, 2024(5):0105.
[10] 艾瑞咨询.2022年中国智能机器人行业研究报告[Z]. 2022. [11] 乔大勇, 苑伟政, 任勇.MEMS激光雷达综述[J]. 微电子学与计算机, 2023, 40(1):41-49. [12] 霍健, 陈慧敏, 马云飞, 等.基于MEMS激光雷达的车辆目标识别算法[J]. 兵工学报, 2023, 44(4):940-948. [13] 王永杰.基于MEMS微镜的车载激光雷达扫描系统设计[D]. 重庆:重庆理工大学, 2020. [14] SHI Q F, SUN Z D, LE X H, et al.Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence[J]. ACS Nano, 2023, 17(5):4985-4998.
[15] TONG Z H, HU H Y, WU Z P, et al.An ultrasonic proximity sensing skin for robot safety control by using piezoelectric micromachined ultrasonic transducers (PMUTs)[J]. IEEE Sensors Journal, 2022, 22(18):17351-17361.
[16] ZHOU J K, LI J, JIA H L, et al.Mormyroidea-inspired electronic skin for active non-contact three-dimensional tracking and sensing[J]. Nature Communications, 2024(15):9875.
[17] HUANG Q, ZHANG S.Applications of IMU in humanoid robot[J]. Humanoid Robotics:A Reference, 2018(10):2497-2519.
[18] ALTERIIS G D, CONTE C, MORIELLO R S L, et al.Use of consumer-grade MEMS inertial sensors for accurate attitude determination of drones[C]. 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2020.
[19] WU Y B, KUANG J, NIU X J.Wheel-INS2:multiple MEMS IMU-based dead reckoning system with different configurations for wheeled robots[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3):3064-3077.
[20] LONG J Y, MOU J D, ZHANG L W, et al.Attitude data-based deep hybrid learning architecture for intelligent fault diagnosis of multi-joint industrial robots[J]. Journal of Manufacturing Systems, 2021(61):736-745.
[21] NONOMURA Y.Sensor technologies for automobiles and robots[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(7):984-994.
[22] 丁衡高.三十年不断发展的MEMS惯性传感器[J]. 导航与控制, 2023, 22(4):1-4. [23] LI J, LIU X F, WANG Z L, et al.Real-time human motion capture based on wearable inertial sensor networks[J]. IEEE Internet of Things Journal, 2022, 9(11):8953-8966.
[24] BABATAIN W, BUTTNER U, EL-ATAB N, et al.Graphene and liquid metal integrated multifunctional wearable platform for monitoring motion and human-machine interfacing[J]. ACS Nano, 2022, 16(12):20305-20317.
[25] NTAGIOS M, NASSAR H, PULLANCHIYODAN A, et al.Robotic hands with intrinsic tactile sensing via 3D printed soft pressure sensors[J]. Advanced Intelligent Systems, 2020, 2(6):1900080.
[26] CHEN W, BU Y H, LI D L, et al.Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection[J]. Journal of Materials Chemistry C, 2020(8):900-908.
[27] LIN Y C, DUAN S S, ZHU D, et al.Self-powered and interface-independent tactile sensors based on bilayer single-electrode triboelectric nanogenerators for robotic electronic skin[J]. Advanced Intelligent Systems, 2023, 5(4):2100120.
[28] BAYER I S.MEMS-based tactile sensors:materials, processes and applications in robotics[J]. Micromachines (Basel), 2022, 13(12):2051.
[29] LIU H C, JI T C, LI H Y, et al.An integrated 3D MEMS force sensing and feedback system for robot-assisted minimally invasive surgery[J]. IEEE Sensors Journal, 2024, 24(11):17470-17477.
[30] HOU C, WANG K Y, WANG F X, et al.A highly integrated 3D MEMS force sensing module with variable sensitivity for robotic-assisted minimally invasive surgery[J]. Advanced Functional Materials, 2023, 33(43):2302812.
[31] LIU F Y, DESWAL S, CHRISTOU A, et al.Neuro-inspired electronic skin for robots[J]. Science Robotics, 2022, 7(67):7344.
[32] WANG W C, JIANG Y W, ZHONG D L, et al.Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin[J]. Science, 2023, 380(6646):735-742.
[33] OSBORN L E, DRAGOMIR A, BETTHAUSER J L, et al.Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain[J]. Science Robotics, 2018, 3(19):3818.
[34] WANG F X, WANG M J, LIU H C, et al.Multifunctional self-powered e-skin with tactile sensing and visual warning for detecting robot safety[J]. Advanced Materials Interfaces, 2020, 7(19):2000536.
[35] CHEN T, ZHANG S H, LIN Q H, et al.Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface[J]. Nanoscale, 2020, 12(41):21271-21279.
[36] GONG Z H, GAO Z, ZHU G P, et al.A solid-liquid composite flexible bionic three-axis tactile sensor for dexterous hands[J]. IEEE Robotics and Automation Letters, 2024, 9(9):7907-7914.
[37] LI G Z, LIU S Q, WANG L Q, et al.Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition[J]. Science Robotics, 2020, 5(49):8134.
[38] CHENG G, DEAN-LEON E, BERGNER F, et al.A comprehensive realization of robot skin:sensors, sensing, control, and applications[J]. Proceedings of the IEEE, 2019, 107(10):2034-2051.
[39] GE C Y, WANG Z L, LIU Z, et al.A capacitive and piezoresistive hybrid sensor for long-distance proximity and wide-range force detection in human-robot collaboration[J]. Advanced Intelligent Systems, 2022, 4(3):2100213.
[40] GUO X G, SUN Z D, ZHU Y, et al.Zero-biased bionic fingertip e-skin with multimodal tactile perception and artificial intelligence for augmented touch awareness[J]. Advanced Materials, 2024, 36(39):2406778.
[41] TEMPLEMAN J O, SHEIL B B, SUN T.Multi-axis force sensors:a state-of-the-art review[J]. Sensors and Actuators A:Physical, 2020(304):111772.
[42] PERSAUD K, DODD G.Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature, 1982(299):352-355.
[43] FAHAD H M, SHIRAKI H, AMANI M, et al.Room temperature multiplexed gas sensing usingchemical-sensitive 3.5-nm-thin silicon transistors[J]. Science Advances, 2017, 3(3): e1602557.
[44] LI D S, XIE Z H, QU M J, et al.Virtual sensor array based on butterworth-van dyke equivalent model of QCM for selective detection of volatile organic compounds[J]. ACS Applied Materials & Interfaces, 2021, 13(39):47043-47051.
[45] ISHIDA H, NAKAMOTO T, MORIIZUMI T.Fundamental study of mobile system for smelling object localization using plural gas sensor[C]. IEEE Industrial Electrics Society, 1993.
[46] ISHIDA H, SUETSUGU K, NAKAMOTO T, et al.Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors[J]. Sensors and Actuators A:Physical, 1994, 45(2):153-157.
[47] HAYES A T, MARTINOLI A, GOODMAN R M.Swarm robotic odor localization[C]. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001.
[48] 陈欣星.基于轮式移动机器人的室内烟雾源定位算法研究[D]. 武汉:华中科技大学, 2020.
计量
- 文章访问数: 813
- HTML全文浏览量: 88
- PDF下载量: 185