先进气体传感器及其智能感知应用研究进展

张冬至, 张昊, 焦功傲, 牛昶, 刘宗伟, 丁佐哲

文章导航 >  智能感知工程  > 2024  >  1(1) : 25-38.
张冬至, 张昊, 焦功傲, 牛昶, 刘宗伟, 丁佐哲. 先进气体传感器及其智能感知应用研究进展[J]. 智能感知工程, 2024, 1(1): 25-38.
引用本文: 张冬至, 张昊, 焦功傲, 牛昶, 刘宗伟, 丁佐哲. 先进气体传感器及其智能感知应用研究进展[J]. 智能感知工程, 2024, 1(1): 25-38.
ZHANG Dongzhi, ZHANG Hao, JIAO Gongao, NIU Chang, LIU Zongwei, DING Zuozhe. Research Progress on Advanced Gas Sensors and Its Intelligent Perception Applications[J]. Intelligent Perception Engineering, 2024, 1(1): 25-38.
Citation: ZHANG Dongzhi, ZHANG Hao, JIAO Gongao, NIU Chang, LIU Zongwei, DING Zuozhe. Research Progress on Advanced Gas Sensors and Its Intelligent Perception Applications[J]. Intelligent Perception Engineering, 2024, 1(1): 25-38.

先进气体传感器及其智能感知应用研究进展

基金项目: 

国家自然科学基金项目(52475580)

山东省泰山学者专项项目(tsqn202211077)。

详细信息
    作者简介:

    张冬至(通信作者)(1981—),男,博士,教授,博士研究生导师,研究方向:微纳传感技术与微系统、柔性电子技术与智能感知、多参量传感与融合感知技术、电子信息技术与仪器等。

  • 中图分类号: TP212

Research Progress on Advanced Gas Sensors and Its Intelligent Perception Applications

  • 摘要: 先进气体传感器具有高灵敏度、小型化、低成本及在线监测等优势,被广泛应用于工业安全、环境监测和医疗卫生等领域,并在多场景智能感知监测中发挥着重要作用。从敏感材料、器件结构及人工智能算法等方面分析先进气体传感器性能优化方法,并对先进气体传感器在石油化工、电力设备、民生健康、能源安全和矿井安全领域中的应用研究进行全面总结,阐述先进气体传感器在关乎国计民生的诸多领域中的重要作用。未来,先进气体传感器将向着高可靠性、微型化和智能化方向发展,以满足更多行业需求,赋能新质生产力发展。
    Abstract: Advanced gas sensors have the advantages of high-sensitivity,miniaturization,low cost,and online monitoring,which are widely used in industrial safety,environmental monitoring and medical health fields.The sensors play an important role in multi-scene intelligent perception monitoring.The performance optimization methods of advanced gas sensors from the aspects of sensitive materials,device structures and artificial intelligence algorithms are comprehensively analyzed.The application research of advanced gas sensors in petrochemical industry,power equipment,health care,energy security and mine safety are summarized.The important role of advanced gas sensors in many fields related to national economy and people's livelihood is described.In the future,advanced gas sensors will develop in the direction of high reliability,miniaturization and intelligence to meet more industry needs and empower new productive development.
  • [1]

    Health Effects Institute.State of global air 2020[Z]. 2020.

    [2]

    ZHANG D Z, YU S J, WANG X W, et al.UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection[J]. Journal of Hazardous Materials, 2022(423):127160.

    [3]

    YANG Y, ZHANG D Z, WANG D Y, et al.A high-stability weighing paper/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered In2O3 nanocubes/SnS2 nanoflower NO2 gas sensors[J]. Journal of Materials Chemistry A, 2021(9):14495-14506.

    [4]

    KIM J, NAZARIAN-SAMANI M, LEE J, et al.Extrinsic oxygen defects in SnO/SnO2 heterostructure for efficient NO2 gas detection[J]. Sensors and Actuators B:Chemical, 2024(399):134751.

    [5]

    LI X, HU H, TAN T, et al.Enhancing methane gas sensing through defect engineering in Ag-Ru Co-doped ZnO nanorods[J]. ACS Applied Materials & Interfaces, 2024, 16(20):26395-26405.

    [6]

    ROSSINYOL E, MARSAL A, ARBIOL J, et al.Crystalline mesoporous tungsten oxide for gas sensing applications[C]. Conference on Electron Devices, 2005.

    [7]

    MEI H X, PENG J Y, WANG T, et al.Overcoming the limits of cross-sensitivity:pattern recognition methods for chemiresistive gas sensor array[J]. Nano-Micro Letters, 2024(16):269.

    [8] 尹嘉琦, 沈文锋, 吕大伍, 等.金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1):34-47.
    [9] 杨琳.贵金属Pt修饰氧化物半导体的三乙胺气敏特性研究[D]. 长春:吉林大学, 2023.
    [10]

    MIRZAEI A, KIM J Y, KIM H W, et al.Resistive gas sensors based on 2D TMDs and MXenes[J]. Accounts of Chemical Research, 2024, 57(16):2395-2413.

    [11]

    WANG L L, LOU Z, ZHANG R, et al.Hybrid Co3O4/SnO2 core-shell nanospheres as real-time rapid-response sensors for ammonia gas[J]. ACS Applied Materials & Interfaces, 2016, 8(10):6539-6545.

    [12]

    CHO S H, SUH J M, JEONG B, et al.Substantially accelerated response and recovery in pd-decorated WO3 nanorods gasochromic hydrogen sensor[J]. Small, 2024, 20(32):2309744.

    [13]

    YANG T Y, YANG X D, ZHU M M, et al.Coral-like ZnFe2O4-ZnO mesoporous heterojunction architectures:synthesis and enhanced sensing properties for triethylamine[J]. Inorganic Chemistry Frontiers, 2020(7):1918-1926.

    [14] 戴正飞, 李越, 蔡伟平.纳米结构薄膜型气敏传感器的研究进展[J]. 物理, 2014, 43(6):364-372.
    [15] 杨俊超, 潘勇, 秦墨林, 等.金属氧化物半导体气敏传感器研究进展[J]. 化学传感器, 2022, 42(2):10-18.
    [16]

    WANG D Y, YU D Q, XU M H, et al.Electrohydrodynamic-jet-printed SnO2-TiO2-composite-based microelectromechanical systems sensor with enhanced ethanol detection[J]. Sensors, 2024, 24(15):4866.

    [17]

    LIU R C, XIE D C, ADEDOKUN G, et al.A low power bridge-type gas sensor with enhanced sensitivity to ethanol by sandwiched ZnO/Au/ZnO film sputtered in O2 atmosphere[J]. IEEE Sensors Journal, 2021, 21(17):18578-18587.

    [18]

    HU J W, QIAN H, HAN S Y, et al.Light-Activated virtual sensor array with machine learning for non-invasive diagnosis of coronary heart disease[J]. Nano-Micro Letters, 2024(16):274.

    [19]

    YANG Y N, WANG X L, ZHAO L, et al.An E-nose system for identification and quantification of hazardous gas mixtures using a combined strategy of CNNs and attentional mechanisms[J]. Physica Scripta, 2024(99):096001.

    [20]

    I Y P, GU S G, GUPTA J P.A preliminary explore to the forced ventilation on the toxic gas release/dispersion and the hazard mitigation within a petrochemical plant[J]. Journal of Loss Prevention in the Process Industries, 2021(69):104341.

    [21]

    HUMAYUN M T, DIVAN R, STAN L, et al.Ubiquitous low-cost functionalized multi-walled carbon nanotube sensors for distributed methane leak detection[J]. IEEE Sensors Journal, 2016, 16(24):8692-8699.

    [22]

    QIU C K, ZHANG H, LI Q R, et al.PANI/CoMoO4 nanocomposite heterostructures for detection of NH3 at room temperature[J]. ACS Applied Nano Materials, 2024, 7(1):857-865.

    [23]

    KU W, LEE G, LEE Y J, et al.Rational design of hybrid sensor arrays combined synergistically with machine learning for rapid response to a hazardous gas leak environment in chemical plants[J]. Journal of Hazardous Materials, 2024(466):133649.

    [24] 陈寅生, 赵文杰, 宋凯, 等.危险气体泄漏源搜寻多机器人系统的设计与实现[J]. 传感技术学报, 2018, 31(7):1132-1140.
    [25]

    GONZÁLEZ E, CASANOVA-CHAFER J, ROMERO A, et al.LoRa sensor network development for air quality monitoring or detecting gas leakage events[J]. Sensors, 2020, 20(21):6225.

    [26]

    Istad M, Runde M.Thirty-six years of service experience with a national population of gas-insulated substations[J]. IEEE Transactions on Power Delivery, 2010, 25(4):2448-2454.

    [27]

    ZHANG X X, LIU W T, TANG J, et al.Study on PD detection in SF6 using multi-wall carbon nanotube films sensor[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3):833-838.

    [28]

    UDDIN A S M I, YAQOOB U, CHUNG G S, et al.Dissolved hydrogen gas analysis in transformer oil using Pd catalyst decorated on ZnO nanorod array[J]. Sensors and Actuators B:Chemical, 2016(226):90-95.

    [29]

    KONDALKAR V V, PARK J, LEE K.MEMS hydrogen gas sensor for in-situ monitoring of hydrogen gas in transformer oil[J]. Sensors and Actuators B:Chemical, 2021(326):128989.

    [30]

    ARDILA-REY J A, CERDA-LUNA M P, MUÑOZ C B, et al.A novel e-nose system for the characterization of dissolved gases in dielectric oils[J]. IEEE Transactions on Instrumentation and Measurement, 2023(72):1-16.

    [31]

    TANG S R, CHEN W G, JIN L F, et al.SWCNTs-based MEMS gas sensor array and its pattern recognition based on deep belief networks of gases detection in oil-immersed transformers[J]. Sensors and Actuators B:Chemical, 2020(312):127998.

    [32] 胡燕婕, 邱园华, 陈恩国, 等.有机性挥发物在肺癌组织和癌细胞株中的检测和分析[J]. 浙江大学学报(医学版), 2010, 39(3):278-284.
    [33]

    GVNTNER A, KOREN V, CHIKKADI K, et al.E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer?[J]. ACS Sensors, 2016(1):528-535.

    [34]

    BIAN J D, ZHANG Y, TANG M C, et al.Ultrasensitive acetone detection based on flower-like MOF-CuO/α-Fe2O3 heterojunctions[J]. IEEE Sensors Journal, 2024, 24(6):7456-7462.

    [35]

    SUI X X, ZHANG D Z, WANG J H, et al.PPB-level detection of trimethylamine as biomarker in exhaled gas based on MoO3/V2O5 hierarchical heterostructure[J]. Journal of Alloys and Compounds, 2023(968):172104.

    [36]

    LEE J E, LIM C K, PARK H J, et al.ZnO-CuO core-hollow cube nanostructures for highly sensitive acetone gas sensors at the ppb level[J]. ACS Applied Materials & Interfaces, 2020, 12(31):35688-35697.

    [37]

    SELVARAJ B, RAYAPPAN J B B, BABU K J.Room temperature ZnO/NiO heterostructure sensing response:a breath biomarker sensor[J]. Journal of Alloys and Compounds, 2022(914):165224.

    [38]

    SELVARAJ B, RAJASEKAR E, RAYAPPAN J B B.Machine learning approaches:detecting the disease variants in human-exhaled breath biomarkers[J]. ACS Omega 2024, 9(1):215-226

    [39]

    BRAY F, LAVERSANNE M, SUNG H, et al., Global cancer statistics 2022:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2024, 74(3):229-263.

    [40]

    LI L, TIAN Z W, ZHAO W H, et al.“Sniff” lung cancer biomarkers in breath using N-doped monolayer WS2:a theoretical feasibility[J]. Applied Surface Science, 2023(614):156257.

    [41]

    KIM N H, CHOI S J, YANG D J, et al.Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer[J]. Sensors and Actuators B:Chemical, 2014(193):574-581.

    [42]

    GONG C Y, CHEN M, SONG F, et al.A highly sensitive toluene gas sensor based on Pd/PdO decorated SnO2 prepared by electrospinning[J]. ACS Applied Electronic Materials, 2024, 6(8):6036-6048.

    [43]

    SUZUKI Y, SAITO J, MUNAKATA M, et al.Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease[J]. Allergology International, 2021, 70(2):181-189.

    [44]

    JING Q, GONG C Y, BIAN W G, et al.Ultrasensitive chemiresistive gas sensor can diagnose asthma and monitor its severity by analyzing its biomarker H2S:an experimental, clinical, and theoretical study[J]. ACS Sensors, 2022, 7(8):2243-2252.

    [45]

    BINSON V A, SUBRAMONIAM M, SUNNY Y, et al.Prediction of pulmonary diseases with electronic nose using SVM and XGBoost[J]. IEEE Sensors Journal, 2021, 21(18):20886-20895.

    [46]

    LI J, HANNON A, YU G, et al.Electronic nose development and preliminary human breath testing for rapid, non-invasive COVID-19 detection[J]. ACS Sensors, 2023, 8(6):2309-2318.

    [47]

    MEI W X, LIU Z, WANG C D, et al.Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023(14):5251.

    [48] 吴静云, 郭鹏宇, 张淼, 等.基于气体检测的锂电池热失控预警研究进展[J]. 消防科学与技术, 2022, 41(2):161-164.
    [49]

    DEVI P, SINGH J P.A highly sensitive colorimetric gas sensor based on indium oxide nanostructures for H2S detection at room temperature[J]. IEEE Sensors Journal, 2021, 21(17):18512-18518.

    [50]

    LI X, KANG N, WU M, et al.Diethyl carbonate (DEC) gas sensor based on CeO2 loaded In2O3 hollow spheres for thermal runaway monitoring of Li-ion batteries[J]. Japanese Journal of Applied Physics, 2022(61):107002.

    [51]

    HONG J C, WANG Z P, YAO Y T.Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks[J]. Applied Energy, 2019(251):113381.

    [52]

    SU H Y, YANG H M, MA C F, et al.High response and selectivity of the SnO2 nanobox gas sensor for ethyl methyl carbonate leakage detection in a lithium-ion battery[J]. ACS Sensors, 2024, 9(1):444-454.

    [53]

    ESSL C, SEIFERT L, RABE M, et al.Early detection of failing automotive batteries using gas sensors[J]. Batteries, 2021, 7(2):25.

    [54]

    MATEEV V, MARINOVA I, KARTUNOV Z.Gas leakage source detection for li-ion batteries by distributed sensor array[J]. Sensors, 2019, 19(13):2900.

    [55]

    ZHANG D Z, CHANG H Y, SUN Y E, et al.Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature[J]. Sensors and Actuators B:Chemical, 2017(252):624-632.

    [56]

    ZHANG W S, YUAN T W, WANG X H, et al.Coal mine gases sensors with dual selectivity at variable temperatures based on a W18O49 ultra-fine nanowires/Pd@Au bimetallic nanoparticles composite[J]. Sensors and Actuators B:Chemical, 2022(354):131004.

    [57]

    LI Y W, GUO S, WANG B Y, et al.Machine learning-assisted wearable sensor array for comprehensive ammonia and nitrogen dioxide detection in wide relative humidity range[J]. InfoMat, 2024, 6(6):e12544.

    [58]

    DEY P, CHAULYA S K, KUMAR S.Hybrid CNN-LSTM and IoT-based coal mine hazards monitoring and prediction system[J]. Process Safety and Environmental Protection, 2021(152):249-263.

    [59]

    KUMARI K, DEY P, KUMAR C, et al.UMAP and LSTM based fire status and explosibility prediction for sealed-off area in underground coal mine[J]. Process Safety and Environmental Protection, 2021(146):837-852.

计量
  • 文章访问数:  514
  • HTML全文浏览量:  4
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-01

目录

    /

    返回文章
    返回