基于二维材料的多模态智能感知器件研究

曹暾, 卢思璇, 贾婧媛, 宋晨阳, 毛小倩, 陈思蜜

文章导航 >  智能感知工程  > 2024  >  1(1) : 39-50.
曹暾, 卢思璇, 贾婧媛, 宋晨阳, 毛小倩, 陈思蜜. 基于二维材料的多模态智能感知器件研究[J]. 智能感知工程, 2024, 1(1): 39-50.
引用本文: 曹暾, 卢思璇, 贾婧媛, 宋晨阳, 毛小倩, 陈思蜜. 基于二维材料的多模态智能感知器件研究[J]. 智能感知工程, 2024, 1(1): 39-50.
CAO Tun, LU Sixuan, JIA Jingyuan, SONG Chenyang, MAO Xiaoqian, CHEN Simi. Research on Multimodal Intelligent Perception Devices Based on Two-dimensional Materials[J]. Intelligent Perception Engineering, 2024, 1(1): 39-50.
Citation: CAO Tun, LU Sixuan, JIA Jingyuan, SONG Chenyang, MAO Xiaoqian, CHEN Simi. Research on Multimodal Intelligent Perception Devices Based on Two-dimensional Materials[J]. Intelligent Perception Engineering, 2024, 1(1): 39-50.

基于二维材料的多模态智能感知器件研究

详细信息
    作者简介:

    曹暾(通信作者)(1979—),男,博士,教授,大连理工大学光电工程与仪器科学学院院长,博士生导师,研究方向:纳米材料与器件、纳米光学与技术、表面等离激元光学、光场调控及应用、先进制造等。

  • 中图分类号: TP211

Research on Multimodal Intelligent Perception Devices Based on Two-dimensional Materials

  • 摘要: 近年来,随着物联网和人工智能技术的快速发展,能够融合视觉、触觉、气味等多种感知能力的多模态智能感知器件在信息采集和处理等领域展现出广阔的应用前景。二维材料具有高比表面积、可调电子结构和多物理场效应特性,成为构建高性能、多模态感知器件的理想候选材料。此外,二维材料传感器件具备多维数据实时分析和机器学习性能,能够实现自学习和自优化功能。首先,综述基于二维材料的智能感知器件研究现状;其次,分析二维材料在电学、光学、力学及化学感知领域的应用特性,涵盖气体传感、生物传感、光电传感、应力传感及多模态智能传感等方面;最后,探讨基于二维材料的智能感知器件在实际应用中面临的挑战,如材料制备的均一性、器件的稳定性、多功能集成性、智能化与数据处理等,并展望未来研究趋势。
    Abstract: In recent years,with the rapid development of the internet of things and artificial intelligence technologies,multimodal intelligent perception devices capable of integrating multiple sensing capabilities such as vision,touch,and odor.The multimodal intelligent perception devices have shown broad application prospects in the fields of information acquisition and processing.Due to their high specific surface area,tunable electronic structure and multi-physical field sensing properties,two-dimensional materials are ideal candidates for building high-performance,multi-modal sensing devices.In addition,2D material sensor devices are also capable of real-time analysis of multi-dimensional data and machine learning,which can realize self-learning and self-optimization functions.Firstly,reviews the current research status of intelligent perception devices based on 2D materials.Then,analyses the application characteristics of 2D materials in the fields of electrical,optical,mechanical and chemical sensing,covering intelligent gas sensing,intelligent biosensing,intelligent optoelectronic sensing,intelligent stress sensing and multimodal intelligent sensing.Finally,the challenges faced by 2D material-based intelligent perception devices in practical applications are discussed,such as homogeneity of material preparation,stability of devices,multifunctional integration,intelligence and data processing,and future research trends are envisioned.
  • [1] 单旋宇, 王中强, 谢君, 等.面向感存算一体化的光电忆阻器件研究进展[J]. 物理学报, 2022, 71(14):421-440.
    [2]

    HUANG Z H, LI Y R, ZHANG Y, et al.2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications[J]. International Journal of Extreme Manufacturing, 2024, 6(3):032003.

    [3] 李策, 杨栋梁, 孙林锋.基于二维层状材料的神经形态器件研究进展[J]. 物理学报, 2022, 71(21):30-55.
    [4] 杨东.二维纳米材料在能源与器件方面的应用与研究[D]. 合肥:中国科学技术大学, 2019.
    [5] 姜德刚.石墨烯材料的制备及其在超级电容器和温敏型智能器件方面的应用[D]. 青岛:青岛大学, 2017.
    [6] 廖峭波.新型功能化二维材料的设计及其应用研究[D]. 南京:南京大学, 2019.
    [7] 钟勉, 邹瑶, 李世琛, 等.激光诱导石墨烯柔性可穿戴传感器的研究进展[J]. 电子元件与材料, 2023, 42(3):266-280.
    [8] 罗绍珍.有机金属硫属化合物的合成及电学性能研究[D]. 福州:福建师范大学, 2023.
    [9] 冯硕.基于钙钛矿与过渡金属硫化物异质结的高性能光电探测器[D]. 深圳:深圳大学, 2023.
    [10] 冯凯.基于表面等离激元效应的过渡金属硫化物光电探测器[D]. 太原:太原理工大学, 2022.
    [11]

    NALWA H S.A review of molybdenum disulfide (MoS2) based photodetectors:from ultra-broadband, self-powered to flexible devices[J]. Rsc Advances, 2020, 10(51):30529-30602.

    [12]

    LUO L, GAO J W, ZHENG L, et al.Ultra-low power consumption flexible sensing electronics by dendritic bilayer MoS2[J]. Infomat, 2024, 6(12):e12605.

    [13]

    DONG L Y, XUE B J, WEI G D, et al.Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration[J]. Advanced Science, 2024, 11(29):2403665.

    [14]

    WANG H L, XIA H, LIU Y Q, et al.Room-temperature low-threshold avalanche effect in stepwise van-der-waals homojunction photodiodes[J]. Nature Communications, 2024(15):3639.

    [15]

    ZHU Y Y, WANG Y, PANG X C, et al.Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region[J]. Nature Communications, 2024, 15(1):6015.

    [16]

    CHEN Y X, FANG F Z, ZHANG N.Advance in additive manufacturing of 2D materials at the atomic and close-to-atomic scale[J]. Npj 2D Materials and Applications, 2024(8):17.

    [17]

    WANG Y, SARKAR S, YAN H, et al.Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides[J]. Nature Electronics, 2024(7):638-645.

    [18] 何航.二维材料气体传感器的理论设计与机理研究[D]. 济南:山东师范大学, 2024.
    [19] 寇翠云, 罗一语, 胡海国, 等.二维材料场效应晶体管生化传感器件的研究进展[J]. 分析化学, 2024, 52(2):157-165.
    [20] 汤凯.基于二维黑磷半导体的光电探测与功能器件研究[D]. 成都:电子科技大学, 2024.
    [21]

    HE Z Z, YU C, LIU Q B, et al.High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate[J]. Carbon, 2020(164):435-441.

    [22]

    ANICHINI C, CZEPA W, PAKULSKI D, et al.Chemical sensing with 2D materials[J]. Chemical Society Reviews, 2018(47):4860-4908.

    [23]

    VARGHESE S S, VARGHESE S H, SWAMINATHAN S, et al.Two-dimensional materials for sensing:graphene and beyond[J]. Electronics, 2015(4):651-687.

    [24]

    CAO G M, MENG P, CHEN J G, et al.2D material based synaptic devices for neuromorphic computing[J]. Advanced Functional Materials, 2021, 31(4):2005443.

    [25]

    HUANG Z H, LI Y R, ZHANG Y, et al.2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications[J]. International Journal of Extreme Manufacturing, 2024, 6(3):032003.

    [26]

    ZHANG Q, ZHANG J Q, WAN S Y, et al.Stimuli-responsive 2D materials beyond graphene[J]. Advanced Functional Materials, 2018, 28(45):1802500.

    [27]

    TYAGI D, WANG H D, HUANG W C, et al.Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications[J]. Nanoscale, 2020(12):3535-3559.

    [28]

    ROHAIZAD N, MAYORGA-MARTINEZ C C, FOJTU。M, et al.Two-dimensional materials in biomedical, biosensing and sensing applications[J]. Chemical Society Reviews, 2021(50):619-657.

    [29]

    LEVE Z D, IWUOHA E I, ROSS N.The synergistic properties and gas sensing performance of functionalized graphene-based sensors[J]. Materials, 2022, 15(4):1326.

    [30]

    SADDOW S E.Silicon Carbide Biotechnology[M]. 2th ed.Amsterdam:Elsevier, 2016.

    [31]

    PEREIRA V M, NETO A H C.Strain engineering of graphene's electronic structure[J]. Physical Review Letters, 2009, 103(4):046801.

    [32]

    PEREIRA V M, NETO A H C, PERES N M R.Tight-binding approach to uniaxial strain in graphene[J]. Physical Review B, 2009, 80(4):045401.

    [33]

    KIANI M, REHMAN M U, TIAN X Q, et al.Two-dimensional nanomaterials for the development of efficient gas sensors:recent advances, challenges, and future perspectives[J]. Advanced Materials Technologies, 2022, 7(7):2101252.

    [34]

    MATHEW M, RADHAKRISHNAN S, VAIDYANATHAN A, et al.Flexible and wearable electrochemical biosensors based on two-dimensional materials: recent developments[J]. Analytical and Bioanalytical Chemistry, 2021(413):727-762.

    [35]

    SUN Y F, GAO S, LEI F C, et al.Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015(44):623-636.

    [36]

    YANG S X, JIANG C B, WEI S H.Gas sensing in 2D materials[J]. Applied Physics Reviews, 2017(4):021304.

    [37]

    DAS T, SHARMA B K, KATIYAR A K, et al.Graphene-based flexible and wearable electronics[J]. Journal of Semiconductors, 2018, 39(1):011007.

    [38]

    KUMAR R, ZHENG W, LIU X H, et al.MoS2-based nanomaterials for room-temperature gas sensors[J]. Advanced Materials Technologies, 2020, 5(5):1901062.

    [39]

    MA H L, FANG H J, XIE X X, et al.Optoelectronic synapses based on MXene/Violet phosphorus van der waals heterojunctions for visual-olfactory crossmodal perception[J]. Nano-Micro Letters, 2024(16):104.

    [40]

    XUE T Y, LIANG W Y, LI Y W, et al.Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 2019(10):28.

    [41]

    CHEN Y A, PÖTSCHKE P, PIONTECK J, et al.Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications[J]. Journal of Materials Chemistry A, 2018(6):7777-7785.

    [42]

    PAN X, LI Y X, CHENG B, et al.2D materials for intelligent devices[J]. Science China Physics, Mechanics & Astronomy, 2023(66):117504.

    [43]

    AN J R, ZHAO X Y, ZHANG Y N, et al.Perspectives of 2D materials for optoelectronic integration[J]. Advanced Functional Materials, 2022, 32(14):2110119.

    [44]

    XIE D D, WEI L B, XIE M, et al.Photoelectric visual adaptation based on 0D-CsPbBr3-Quantum-Dots/2D-MoS2 mixed-dimensional heterojunction transistor[J]. Advanced Functional Materials, 2021, 31(14):2010655.

    [45]

    MENG J L, WANG T Y, ZHU H, et al.Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application[J]. Nano Letters, 2022, 22(1):81-89.

    [46]

    HUANG S R, CROY A, PANES-RUIZ L A, et al.Machine learning-enabled smart gas sensing platform for identification of industrial gases[J]. Advanced Intelligent Systems, 2022, 4(4):2200016.

    [47]

    KWON Y M, OH B, PURBIA R, et al.High-performance and self-calibrating multi-gas sensor interface to trace multiple gas species with sub-ppm level[J]. Sensors and Actuators B:Chemical, 2023(375):132939.

    [48]

    TURCHANIN A, GÖLZHÄUSER A.Carbon nanomembranes[J]. Advanced Materials, 2016, 28(29):6075-6103.

    [49]

    LI X, SUN R J, PAN J Y, et al.All-MXene-Printed RF resonators as wireless plant wearable sensors for in situ ethylene detection[J]. Small, 2023, 19(24):2207889.

    [50] 徐浩.Ti3C2Tx基传感器集成及人机交互应用研究[D]. 长春:吉林大学, 2023.
    [51]

    SAINI H, SRINIVASAN N, ŠEDAJOVÁ V, et al.Emerging MXene@Metal-organic framework hybrids:design strategies toward versatile applications[J]. ACS Nano, 2021, 15(12):18742-18776.

    [52] 董士海.人机交互的进展及面临的挑战[J]. 计算机辅助设计与图形学学报, 2004(1):1-13.
    [53]

    DAI S L, LIU X, LIU Y D, et al.Emerging iontronic neural devices for neuromorphic sensory computing[J]. Advanced Materials, 2023, 35(39):2300329.

    [54]

    Yu J R, Wang Y F, Qin S S, et al.Bioinspired interactive neuromorphic devices[J]. Materials Today, 2022(60):158-182.

    [55]

    WANG L L, QI X Y, LI C B, et al.Multifunctional tactile sensors for object recognition[J]. Advanced Functional Materials, 2024, 34(49):2409358.

    [56]

    GUO X R, XU L, CAI Q F, et al.Intelligent multimodal sensors based on novel electronic-ionic Bi2O2Se semiconductors[C]. 2023 IEEE 15th International Conference on ASIC (ASICON), 2023.

计量
  • 文章访问数:  384
  • HTML全文浏览量:  1
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30

目录

    /

    返回文章
    返回