• Scopus
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)

锂离子电池健康状态估算方法研究进展*

金建新, 虞儒新, 刘刚, 许林波, 马延强, 王浩彬, 胡晨

文章导航 >  电气工程学报  > 2024  >  19(1) : 33-48.  > DOI: 10.11985/2024.01.004
上一篇 下一篇
金建新, 虞儒新, 刘刚, 许林波, 马延强, 王浩彬, 胡晨. 锂离子电池健康状态估算方法研究进展*[J]. 电气工程学报, 2024, 19(1): 33-48. DOI: 10.11985/2024.01.004
引用本文: 金建新, 虞儒新, 刘刚, 许林波, 马延强, 王浩彬, 胡晨. 锂离子电池健康状态估算方法研究进展*[J]. 电气工程学报, 2024, 19(1): 33-48. DOI: 10.11985/2024.01.004
JIN Jianxin, YU Ruxin, LIU Gang, XU Linbo, MA Yanqiang, WANG Haobin, HU Chen. Research Progress on State-of-health Estimating Method for Lithium-ion Batteries[J]. Journal of Electrical Engineering, 2024, 19(1): 33-48. DOI: 10.11985/2024.01.004
Citation: JIN Jianxin, YU Ruxin, LIU Gang, XU Linbo, MA Yanqiang, WANG Haobin, HU Chen. Research Progress on State-of-health Estimating Method for Lithium-ion Batteries[J]. Journal of Electrical Engineering, 2024, 19(1): 33-48. DOI: 10.11985/2024.01.004

锂离子电池健康状态估算方法研究进展*

基金项目: 浙江浙能嘉华发电有限公司科技资助项目(ZNKJ-2021-041)
详细信息
    作者简介:

    金建新,男,1971年生,高级工程师。主要研究方向为能源发电设备智能运维。E-mail:jinjianxin@zjenergy.com.cn

    胡晨,男,1971年生,博士研究生。主要研究方向为锂离子电池、铅炭电池等储能器件及电网大规模储能应用。E-mail:whhuchen@163.com

  • 中图分类号: TM912

Research Progress on State-of-health Estimating Method for Lithium-ion Batteries

  • 摘要: 随着锂离子电池(Lithium-ion batteries,LIB)在电动汽车、储能电站和备用电源等领域的广泛应用,准确、及时地估计电池健康状态(State of health, SOH)是确保电池系统运行可靠性和安全性的关键因素。锂离子电池内部复杂的电化学反应和多变的外部使用条件,使得实现精准的健康状态估计具有挑战。随着人工智能、大数据分析等技术的快速发展,电池SOH评估的方法也逐渐多样化。首先介绍电池的老化机理和SOH概念,随后介绍了实验法、基于模型、数据驱动和融合方法,详细分析了每种方法的特点,并比较了在实际应用中相应的优势和局限性。最后,对SOH估算的未来趋势进行了展望。
    Abstract: With the widespread application of lithium-ion batteries in electric vehicles, energy storage stations, it is the key to ensure the reliability and safety of the battery to accurately estimate the health state of the battery. The complex electrochemical reaction inside lithium-ion battery and the changeable external use conditions make it challenging to realize accurate health state estimation and life prediction. With the rapid development of technologies such as artificial intelligence and big data analysis, the methods of battery health assessment have been gradually diversified. First, the aging mechanism and SOH concept of batteries are introduced in this article. Next, different SOH estimation methods are categorized into four classes:experiment-based, model-based, data-driven, and hybrid methods. The characteristics of each method are analyzed in detail, and the corresponding advantages and limitations in practical applications are compared. Finally, the future trends of SOH estimation are prospected.
  • [1] ZHONG R, DU C Q. A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries[J]. Energy Reports, 2023,9:2993-3021.
    [2] XIAO Y Q, WEN J S, YAO L. A comprehensive review of the lithium-ion battery state of health prognosis methods combining aging mechanism analysis[J]. Journal of Energy Storage, 2023,65:107347.
    [3] 梁新成, 张勉, 黄国钧, 等. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6):1933-1939.
    doi: 10.19799/j.cnki.2095-4239.2020.0166
    LIANG Xincheng, ZHANG Mian, HUANG Guojun, et al. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6):1933-1939.
    doi: 10.19799/j.cnki.2095-4239.2020.0166
    [4] 董海斌, 羡学磊, 马建琴, 等. 锰酸锂电池热失控特性研究[J]. 消防科学与技术, 2022, 41(1):21-25.
    DONG Haibin, XIAN Xuelei, MA Jianqin, et al. Research on thermal runaway characteristics of lithium manganate battery[J]. Fire Science and Technology, 2022, 41(1):21-25.
    doi: 10.3210/fst.41.21
    [5] 薄利明, 郑惠萍, 张世锋, 等. 锂电池健康状态均衡技术综述[J]. 电测与仪表, 2022,4:11-18.
    BO Liming, ZHENG Huiping, ZHANG Shifeng, et al. Review on health state equalization technology for lithium batteries[J]. Electrical Measurement & Instrumentation, 2022,4:11-18.
    [6] TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries:Research status and suggestions[J]. Journal of Cleaner Production, 2020, 261(10):120813.
    doi: 10.1016/j.jclepro.2020.120813
    [7] PASTOR-FERNANDEZ C, UDDIN K, CHOUCHELAMANE G H, et al. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems[J]. Journal of Power Sources, 2017,360:301-318.
    [8] CHRISTOPH R B, MATTHEW R R, EUAN M, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017,341:373-386.
    [9] CUI Y Z, DU C Y, YIN G P, et al. Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge[J]. Journal of Power Sources, 2015,279:123-132.
    [10] JIANG S D, SONG Z X. A review on the state of health estimation methods of lead-acid batteries[J]. Journal of Power Sources, 2022,517:1-18.
    [11] 梁培维, 张彦会. 基于欧姆内阻对锂电池健康状态的估算[J]. 电源技术, 2019, 43(10):1623-1704.
    LIANG Peiwei, ZHANG Yanhui. Estimation of lithium battery health based on ohmic internal resistance[J]. Chinese Journal of Power Sources, 2019, 43(10):1623-1704.
    [12] GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015,89:678-686.
    [13] XIA F, WANG K G, CHEN J J. State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage[J]. Journal of Energy Storage, 2023,64:107161.
    [14] LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018,373:40-53.
    [15] ZHENG Y J, OUYANG M G, LI X J, et al. Recording frequency optimization for massive battery data storage in battery management systems[J]. Applied Energy, 2016,183:380-389.
    [16] HUANG S, LIU C, SUN H, et al. State of health estimation of lithium-ion batteries based on the regional frequency[J]. Journal of Power Sources, 2022,518:230773.
    [17] ZHANG Y, CAI Y X, LIU W, et al. State of health estimation of lithium-ion batteries based on the regional triangle[J]. Journal of Energy Storage, 2023,69:107918.
    [18] CHE Y H, HU X S, LIN X K, et al. Health prognostics for lithium-ion batteries:Mechanisms,methods,and prospects[J]. Energy & Environmental Science, 2023,16:338-371.
    [19] 吴盛军, 袁晓冬, 徐青山, 等. 锂电池健康状态评估综述[J]. 电源技术, 2017, 41(12):1788-1792.
    WU Shengjun, YUAN Xiaodong, XU Qingshan, et al. Review on lithium-ion battery health state assessment[J]. Chinese Journal of Power Sources, 2017, 41(12):1788-1792.
    [20] 高仁璟, 吕治强, 赵帅, 等. 基于电化学模型的锂离子电池健康状态估算[J]. 北京理工大学学报, 2022, 42(9):791-797.
    GAO Renjing, LÜ Zhiqiang, ZHAO Shuai, et al. Health state estimation of Li-ion batteries based on electrochemical model[J]. Transactions of Beijing Institute of Technology, 2022, 42(9):791-797.
    [21] 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7):1703-1725.
    WU Longxing, PANG Hui, JIN Jiamin, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7):1703-1725.
    [22] REN L C, ZHU G R, KANG J Q, et al. An algorithm for state of charge estimation based on a single particle model[J]. Journal of Energy Storage, 2021, 39(7):102644-102651.
    doi: 10.1016/j.est.2021.102644
    [23] TOPAN P A, RAMADAN M N, FATHONI G, et al. State of charge (SOC) and state of health (SOH) estimation on lithium polymer battery via Kalman filter[C]// 2016 2nd International Conference on Science and Technology-Computer (ICST), October 27-28,2016,Yogyakarta,Indonesia. IEEE,2016:93-96.
    [24] 赵可沦, 江境宏, 邓进, 等. 基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J]. 电子测量技术, 2022, 45(23):53-58.
    ZHAO Kelun, JIANG Jinghong, DENG Jin, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least square[J]. Electronic Measurement Technology, 2022, 45(23):53-58.
    [25] KIM T, WANG Y, SAHINOGLU Z, et al. Fast UD factorization based RLS online parameter identification for model-based condition monitoring of lithium-ion batteries[C]// 2014 American Control Conference,June 04-06,2014,Portland,OR,USA. IEEE,2014:4410-4415.
    [26] 孙金磊, 唐传雨, 李磊, 等. 基于状态与模型参数联合估计的老化电池可充入电量估计方法[J]. 电工技术学报, 2022, 37(22):5886-5898.
    SUN Jinlei, TANG Chuanyu, LI Lei, et al. An estimation method of rechargeable electric quantity for aging battery based on joint estimation of state and model parameters[J]. Transactions of China Electrotechnical Society, 2022, 37(22):5886-5898.
    [27] HU X S, CHE Y H, LIN X K, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2):382-398.
    doi: 10.1109/TTE.2020.3017090
    [28] 车云弘, 邓忠伟, 李佳承, 等. 基于数据驱动的电池系统泛化SOH估计方法[J]. 机械工程学报, 2022, 58(20):253-263.
    CHE Yunhong, DENG Zhongwei, LI Jiacheng, et al. Generalized data-driven SOH estimation method for battery systems[J]. Journal of Mechanical Engineering, 2022, 58(20):253-263.
    [29] GRANDJEAN L L, ODIO M X, WIDANAGE W D. Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte[C]//2019 IEEE Vehicle Power and Propulsion Conference (VPPC),2019:1-7.
    [30] LI J, ADEWUYI K, LOTFI N. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018,212:178-190.
    [31] 刘征宇, 杨昆, 魏自红. 包含液相扩散方程简化的锂离子电池电化学模型[J]. 物理学报, 2019, 68(9):251-258.
    LIU Zhengyu, YANG Kun, WEI Zihong. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation[J]. Acta Physica Sinica, 2019, 68(9):251-258.
    [32] LV C, LAI Q Z, GE T F. A lead-acid battery’s remaining useful life prediction by using electrochemical model in the particle filtering framework[J]. Energy, 2017,124:975-984.
    [33] 郭桐, 刘涛, 方德宇, 等. 锂离子电池健康评估研究进展[J]. 电池工业, 2023, 27(1):48-54.
    GUO Tong, LIU Tao, FANG Deyu, et al. Research progress in health assessment of lithium-ion batteries[J]. Chinese Battery Industry, 2023,2023, 27(1):48-54.
    [34] SHRIVASTAVA P, NAIDU P A, SHARMA S, et al. Review on technological advancement of lithium-ion battery states estimation methods for electric vehicle applications[J]. Journal of Energy Storage, 2023,64:107159.
    [35] SONG Y C, LIU D T, HOU Y D, et al. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm[J]. Chinese Journal of Aeronautics, 2018, 31(1):31-40.
    doi: 10.1016/j.cja.2017.11.010
    [36] 邓涛, 罗卫兴, 李志飞, 等. 双卡尔曼滤波法估计电动汽车电池健康状态[J]. 电池, 2018, 48(2):95-99.
    DENG Tao, LUO Weixing, LI Zhifei, et al. Estimation state of health of electric vehicle battery by dual Kalman filter[J]. Battery Bimonthly, 2018, 48(2):95-99.
    [37] FANG L L, LI J Q, PENG B, et al. Online estimation and error analysis of both SOC and SOH of lithium-ion battery based on DEKF method[J]. Energy Procedia,2019:158:3008-3013.
    [38] BI J, ZHANG T, YU H Y, et al. State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter[J]. Applied Energy, 2016,182:558-568.
    [39] 李鹏, 李立伟, 杨玉新. 基于IBOA-PF的锂电池健康状态预测[J]. 储能科学与技术, 2021, 10(2):705-713.
    doi: 10.19799/j.cnki.2095-4239.2020.0391
    LI Peng, LI Liwei, YANG Yuxin. Estimation of lithium-ion battery state of health based on IBOA-PF[J]. Energy Storage Science and Technology, 2021, 10(2):705-713.
    doi: 10.19799/j.cnki.2095-4239.2020.0391
    [40] SCHWUNK S, ARMBRUSTER N, STRAUB S, et al. Particle filter for state of charge and state of health estimation for lithium-ion phosphate batteries[J]. Journal of Power Sources, 2013,239:705-710.
    [41] LIU Yuefeng, HE Yingjie, BIAN Haodong, et al. A review of lithium-ion battery state of charge estimation based on deep learning:Directions for improvement and future trends[J]. Journal of Energy Storage, 2022,52:104664.
    [42] 李建林, 肖珩. 锂离子电池建模现状综述[J]. 储能科学与技术, 2022, 11(2):697-703.
    doi: 10.19799/j.cnki.2095-4239.2021.0450
    LI Jianlin, XIAO Heng. Review on modeling of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(2):697-703.
    doi: 10.19799/j.cnki.2095-4239.2021.0450
    [43] 徐元中, 曹翰林, 吴铁洲. 基于SA-BP神经网络算法的电池SOH预测[J]. 电源技术, 2020, 44(3):341-345.
    XU Yuanzhong, CAO Hanlin, WU Tiezhou. Estimation of SOH for battery based on SA-BP neural network[J]. Chinese Journal of Power Sources, 2020, 44(3):341-345.
    [44] 李文华, 邵方旭, 暴二平, 等. 六自由度振动老化条件下锂离子电池的衰退机理诊断与SOH预测[J]. 仪器仪表学报, 2021, 41(8):62-69.
    LI Wenhua, SHAO Fangxu, BAO Erping, et al. Diagnosis of degradation mechanism and SOH prediction of lithium-ion batteries under 6-DOF vibration and aging conditions[J]. Chinese Journal of Scientific Instrument, 2021, 41(8):62-69.
    [45] 徐彬翔, 郑林锋, 黄乙恒, 等. 基于改进最小二乘支持向量机的锂离子电池健康状态快速估计方法[J]. 电气工程学报, 2022, 17(4):11-19.
    XU Binxiang, ZHENG Linfeng, HUANG Yiheng, et al. Fast estimating the state of health of lithium-ion batteries based on improved least squares support vector machine[J]. Journal of Electrical Engineering, 2022, 17(4):11-19.
    [46] 陈璐, 于仲安, 熊莹燕. 不同温度下基于PSO-LSSVM的锂电池SOH估计与RUL预测[J]. 传感器与微系统, 2023, 42(6):141-145.
    CHEN Lu, YU Zhongan, XIONG Yingyan. SOH estimation and RUL prediction of Li battery based on PSO-LSSVM at different temperatures[J]. Transducer and Microsystem Technologies, 2023, 42(6):141-145.
    [47] SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999,80:293-300.
    [48] HE T T, XU Z P, XIE Q, et al. A method of battery capacity prediction based on fuzzy logic and neural networks[J]. Earth and Environmental Science, 2020,558:052015.
    [49] 樊欣欣, 陈秀国, 王建宾, 等. 基于模糊逻辑的变电站蓄电池在线健康状态评估[J]. 电子器件, 2021, 44(1):136-140.
    FAN Xinxin, CHEN Xiuguo, WANG Jianbin, et al. On-line health assessment of substation battery based on fuzzy logic[J]. Chinese Journal of Electron Devices, 2021, 44(1):136-140.
    [50] 吕佳朋, 史贤俊, 王康. 基于高斯过程回归的电池容量预测模型[J]. 电子测量技术, 2020, 43(3):43-48.
    LÜ Jiapeng, SHI Xianjun, WANG Kang. Battery capacity prediction model based on Gaussian process regression[J]. Electronic Measurement Technology, 2020, 43(3):43-48.
    [51] 陈琳, 刘博豪, 丁云辉, 等. 采用粒子群优化和高斯回归实现电池SOH估计[J]. 汽车工程, 2021, 43(10):1472-1478.
    doi: 10.19562/j.chinasae.qcgc.2021.10.008
    CHEN Lin, LIU Bohao, DING Yunhui, et al. Estimation of battery state-of-health using particle swarm optimization with Gauss process regression[J]. Automotive Engineering, 2021, 43(10):1472-1478.
    [52] 张兴红, 徐翊, 巩泽浩, 等. 融合电化学阻抗与容量增量曲线特征的锂电池健康状态算法研究[J]. 重庆理工大学学报, 2023, 37(5):265-272.
    ZHANG Xinghong, XU Yi, GONG Zehao, et al. Algorithm research on health state of a lithium battery by integrating the features of electrochemical impedance and incremental capacity curves[J]. Journal of Chongqing University of Technology, 2023, 37(5):265-272.
    [53] CHEN Liping, XIE Siqiang, ANTÓNIO M L, et al. A new SOH estimation method for Lithium-ion batteries based on model-data-fusion[J]. Energy, 2024,286:129597.
    [54] HE Jiabei, TIAN Yi, WU Lifeng. A hybrid data-driven method for rapid prediction of lithium-ion battery capacity[J]. Reliability Engineering and System Safety, 2022,226:108674.
    [55] MA Zeyu, YANG Ruixin, WANG Zhenpo. A novel data-model fusion state-of-health estimation approach for lithiumion batteries[J]. Applied Energy, 2019,237:836-847.
    [56] HOU Y K, ZANG Z S, LIU P, et al. Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles[J]. Advances in Mechanical Engineering, 2021, 13(7):1-14.
    [57] 王萍, 彭香园, 程泽, 等. 基于数据驱动模型融合的锂离子电池多时间尺度状态联合估计方法[J]. 汽车工程, 2022, 44(3):362-378.
    WANG Ping, PENG Xiangyuan, CHENG Ze, et al. A multi-time scale joint state estimation method for lithium-ion batteries based on data-driven model fusion[J]. Automotive Engineering, 2022, 44(3):362-378.
    [58] 崔显, 陈自强. 基于ECM和SGPR的高鲁棒性锂离子电池健康状态估计方法[J/OL]. 上海交通大学学报:1-23[2023-03-10]. https://doi.org/10.16183/j.cnki.jsjtu.2022.221..
    CUI Xian, CHEN Ziqiang. et al. A highly robust state of health estimation method of lithium-ion battery based on ECM and SGPR[J/OL]. Journal of Shanghai Jiaotong University:1-23[2023-03-10]. https://doi.org/10.16183/j.cnki.jsjtu.2022.221..
    [59] CHEN Dan, MENG Jinhao, HUANG Huanyang, et al. An empirical-data hybrid driven approach for remaining useful life prediction of lithium-ion batteries considering capacity diving[J]. Energy, 2022,245:123222.
    [60] 陈国麟, 姚行艳. 基于CNN-Transformer的锂离子电池健康状态估计[J]. 重庆工商大学学报, 2024, 41(2):66-73.
    CHEN Guolin, YAO Xingyan. State of health estimation of lithium-ion battery based on CNN-Transformer[J]. Journal of Chongqing Technology and Business University, 2024, 41(2):66-73.
    [61] 倪祥淦, 何志刚, 胡帅, 等. 基于BI-LSTM神经网络的宽采样频率电池SOH估算[J]. 车用发动机, 2022(5):44-50.
    NI Xianggan, HE Zhigang, HU Shuai, et al. Battery SOH estimation with wide sampling frequency based on BI-LSTM neural network[J]. Vehicle Engine, 2022(5):44-50.
    [62] YU J. State of health prediction of lithium-ion batteries:Multiscale logic regression and Gaussian process regression ensemble[J]. Reliability Engineering & System Safety, 2018,174:82-95.
    [63] LIN M Q, WU D G, MENG J H, et al. A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries[J]. Journal of Power Sources, 2022,518:230774.
    [64] 蔡艳平, 陈万, 苏延召, 等. 锂离子电池剩余寿命预测方法综述[J]. 电源技术, 2021, 45(5):678-682.
    CAI Yanping, CHEN Wan, SU Yanzhao, et al. Review of remaining useful life prediction for lithium ion batteries[J]. Chinese Journal of Power Sources, 2021, 45(5):678-682.
    [65] WEI Zhongbao, LENG Feng, HE Zhongjie, et al. Online state of charge and state of health estimation for lithium-ion battery based on a data-model fusion method[J]. Energies, 2018, 11(7):1810-1823.
    doi: 10.3390/en11071810
    [66] 晏莉琴, 马尚德, 罗英, 等. 锂离子电池快速寿命评价技术与方法[J]. 上海航天, 2023, 40(1):123-135.
    YAN Liqin, MA Shangde, LUO Ying, et al. Overview of rapid lifetime evaluation technologies and methods for lithium-ion batteries[J]. Aerospace Shanghai, 2023, 40(1):123-135.
    [67] HONG Shiding, QIN Chaokui, LAI Xin, et al. State-of- health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm[J]. Journal of Energy Storage, 2023,64:107179.
    [68] 王震坡, 王秋诗, 刘鹏, 等. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2):151-168.
    doi: 10.3901/JME.2023.02.151
    WANG Zhenpo, WANG Qiushi, LIU Peng, et al. Review on techniques for power battery state of health estimation driven by big data methods[J]. Journal of Mechanical Engineering, 2023, 59(2):151-168.
    doi: 10.3901/JME.2023.02.151
计量
  • 文章访问数:  295
  • HTML全文浏览量:  36
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2023-11-28
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回